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CHAPTER I

INTRUDUCTION

.
-,

‘The one and wo-way classification models with a covariate have been
treated from many points of view. However the question of the covariate
regression parameter changing from block to block has not been treated so
extensively. That such changes might occur is certainly logical. Granting
that "yield" might increase linearly with, say, temperature, it would not
be at all surprising to find certain blocks, perhaps materials, to be more
responsive to temperature than other blocks.

In the aﬂalysis of variance a single regressi;; ;ffect ‘costs" a
single deg;ee of freedom. If the regression effects change from block to
block it will be necessary to estimate, or adjust for, as many regression
gffects as there are blocks, say r. Thus the additional "cost" of block
regression effect differences is r-1 degrees of freedom.

As a tool in evaluating the adequacy of a one-way classification model
with a covariate, Robson and Atkinson [7] propose an individual degree of
freedom test for the homogeniety of regression cozfficients. The same thiﬁg
cﬁn be done ‘n the iwo-way model. And in a two way model with individual
regression coefficients in the blocks a single degree of freedom test can
be constructed to test fdx regfaasion coefficient differancas among the
troatwents. An ea2sy way to construct these tests is to mimic Scheffe's
motivation (8] of T\key's single Jegree of frecdom fo_r‘nm\qdditivity 9.

»It the model under consideration is Vij -k ei + vj + '”ij + “i3 and




one is concerned that the coefficient ¥ might be changing from bluck to
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block, the procedure is to insert a non-linear ~rm of the sort ¢vjxij inté

the model. Then this expanded model is approximated by the linear model

yij =y + ei + vj +‘¢Xij + ¢ijij + Eij where Gj is the standard least
squares estimate of vj under the original model. It is then the sum of
squares for the dummy coefficient ¢ adjusted for u, 6, v, and ¥ which is
used to test the adequacy of the original model. The fact that the test
is neither exact. nor powerful does not keep it from being vexry useful in
the field of model building.

Granting that one has adopted a model with individual regression co-
efficients for the blocks and fixed effects for the treatmeats, one then
finds the literature preoccupied with eliminating the effects of blocks
and covar:ates in order to focus atten.ion on the tr:2atments. Much of this
work has been done by C. P. Cox (1l]). Noteworthy also is Zelen's adaptation
»f this problem to incomplete block designs [10].

Traditionally a covariate has been considered to be a nuisance factor
to be eliminated.. Perhaps the covariate has been the victim of an unfriendly
press. If the covariate takees on a limited number of discrete values as in
1 Cox's first, second, and third units of tike [1] the covariate model is
actually a shortcut to a factecrial analysis in which all effects of the
covariate factor other than’line#r effects are confounded. These effects
may be of great interest. Even when the covariate is uncontrollable, it is
quite possible that it is known. Of course if all expcrimental units show
the same response to the covariate, that is if yij =)+ 61 + vj + wxij + eij
then if high yields can be considered to be good, it takes no great mathemat~

ical calculations to say "the higher the X the better" or "the lower the X

the better," and likewise, "the highor (or lower) the vj the better." But
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when the regression coefficient depends on the block, the value of the
covariate can become quite important.

Consider three blocks with fixed effects (taken to sum to 0) of -1,
0, and +1. If their corresponding block regression effects (also taken to
sum to 0) are +1, 0, ana -1 (that is, b

=«1+X,b,=0+0X=0,

1 2
b3 =1-X), then the question "Which block gives tha highest yield?" can

be answered only if we knqw the vélue of X. Clearly, if the covariate is

less than 1, the third block will be preferred and if the covariate is more
than 1, the first block will be preferable. Fy taking the block regression
effects to sum to O the possibility of a‘large general regression effect

with the covariate has not been eliminated. That is, in the model

yij =y + ei + vj + wxij + ¢jxij + eij the value of ¥ may be vexry much

larger than the values of the ¢j's. Then we would say "the higher the X

the bettezr--but if X happens to be less than 1, try to use block three and

if X happens to be greater than 1, try to use block one." It is not diffi-
cult to see the userulnegs of this sort of i.formation which is based herxe

on some insight into the "true" rarameters of the model. In cur real world,

of course, we will have to estimate these patamete:s and we shall be interested,
not only in which estimated block effect is larcer at any X, but in whether
these block effects are significantly different at any particular value of

X in light of the normality assumption made for the sij's.

Our interest in a significance level arises from aa assﬁmption Qf a
less function associated with the choice of block. If blocks represent ths
type of material it is logical to assume that some types'are more expensive
than others. Ewven if they are all of the same price, kseping the materials

separated might be expensive and should not be undertaken unless we are

reasonably sure that the blocks are really different aﬁ some, if not all,




values of the covariate X (perhaps the temperature or humidity). This
thesis does not direct itself to any specific loss function; hence, it is
left to the practitioner to kridge the gap between the loss functioh in-
herent in the application and the significance level of the trst.

Returning to the previous example, consider the block and regression

effects given above to be estimates rather than known parameters. That is,

A

let b =-1+x,£2=o, andb,=1-X.

1

Now the gquestion to be answered is "for what values of X are blocks : !

e T

significantly different?" Surely the point X = +1 will not be one cf these

¢
1
&
¢
&
i
i
%
¢
i

points, for at that point the block estimates are exactly equal. We ghall }

ks it 43

expect, intuitively, that the answer to the above question will be the real
line with an interval about the polnt ¥ = 1 deleted. And if that interval
included the whole real line the answei would be that tl_a,e blocks are nowhere
significantly different. Th: higher the significance level, implving that
there is a greater penalty for ivr.ongly reporting block diffe;ences. the

-~ larger we shall expect that interval to be.

The fact tiat the most conﬁmtionally constructed test for block differ-
ences 1? very capable c;f answering the above quegtion, not with one interval,
but with two di;joint intervals (by saying that Slocks are differsnt ewary-
where along tha real line cxc.pt' within those two diszjoint intervals) is per-

haps the most interutinq aspect of this thesis.

N




Knowing the values for X at which blocks are significantly different
enables one to know when it is worthwhile to be particular about blocks.
The estimates of the block effects tell which block to favor at any given

value of X. No consideration is given in t is work to the problem of which

' blocks cause the difference when difference results.

A test is sought, then, for a null hypothesis of "no difference

between blocks when X < x." under the assumption of the model

0
yij =y o+ ei + :pxij + ¢jxij + Eij

i= .1,. 2, *ee , t; j= 1’ 2' tee L, IX; € v NID(O' 02) -

i3
The u, ei, vj. Y, and ¢j are unknown constants. U represents a fixed mean
effect, ei represants a fixed treatment erifect, vi a fixed block effect,

V a mean regression coeificient. and ¢j a block regression goefticien_t.

In the maanner of otheyr two-way models tnese effacts are not completely
estimable and we will need to plaqa three conditions on thum. The usuval
condition 2 5, = C is made to make the estimates of the 8, unique. But

two more co;ditims must be taken to discern the -\’j + ¢jx effects frum the
fixed mean effect u and the regression mean effect YX. As usual we have

a great deal of choi,ce tegarding-t:hese conditions. The criterion is ‘genenll.y
mathematical neatness, but in- this problem the édnditicns which result in

msthematical neatress complicate the parametric statement of the :-.ul}). hypo-

thesis. The ~onditions we shall use aze Z (%, - x.j)@j =0 ard
: 3 _
' 1
+ ! +yx ) =0 vwhere x , = =) x . . Note that when x = x
Loy v iyny vony) =0 vhere x,y RN g

ooy
for all j and §' the first of these conditions singlifies to i ‘j = Q and
consequently the second simplifies to Y (vj + W-j’ = 0 ., By defining
' p -
Ky " Yy + “"x-j the second condition further simplifies to ) g " 0.
]

as.
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“his special case, x . = x ,, for all j and 4§', shall be vrezenied

fully, not with the theought tha* *his case will occur frequently in pracai~c,
bt rather to illuminate varicus theoretical cspects of the problem. After
full considexation of this special case it will) be shown that Lbe general
case follows by avpropriate introduction of ma*rix maltipliers.

It sheculd not cause concarn that in the general case the condiiiuns

used to solve the nornal ecuations depend on g The null nypothests ho
( :

be tested also depends on Sor 1wy ot v t gty T Ty 2/l % we tsus
: b
Hg: Vj + x0§j 20 .
CWhaen 2 stobistic is found to test the hypothasis a+ 1~ R, that tes®

will be inverted to yield the set of X's for which the test would be reiected.
This test inversion will not yinid a ~onfidence set ! ecause the jinversion

does not extend to all atternate hvpotheses. For examule, i finds prob-

able values of X if vy + ¥B, = 0 but not if yj + \C% =1 . & zonfidence
set is of value when a rarameter is unknown. 1irn this problem the covariate,
X, is krewn and we ar2 inrarosted instead in which X's will cause differences

iv che rlocke, lience, if x_ is ia the set, rhen we have reason to belicve
2 .

that assignment of block will aifoect vield wnen ¥ = x? .




CHAPTER I

THE SPECiAL CASE OF EQUAL

COVARIATE BLOCK MEANS

The least squares cstimates of the block parameters are sought as
a basis for a test of their difference. The experimental model under con-
sideration can be written

.= U+ 0, + +B8.r.a,, + yr.a,, +
Yig TH O PRyt ByTyay tUra gt ey

im1, 2,0 ,t;3=1,2, 00 ,1;)« =°’2"i=°’233=°
) 2
r, = X (x,. - x_.) ; Y oa..=0; yai, =1
§ i3 3 IS RS
x.‘-x..
aijg_ll:_._l
' "3

where xij is the value of the covariate X in its original units and assuming,

for this chapter, the condition

x_j = x.j, for all j, j°'

In referring to thapter I} Kj = vj + Wx.j and ej - @i + The purposs
of this reparameterization is .o make Ej and éj independent. The purpose
of factoring (xij - x.j) into :j and aij is only to aid in analyzing sources
of variation after a test is derived.

7
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Let

A= (a

(XX )

ij]txr = (51, 3y 84 ' 8) .

That is, the vector a, has elements aij . Then let

=J

-él 1
a {7
=2
Ad = '.
¢ .
a :
L = z
rexr g
Let
P — ~ -—y
Bl Ky Fel
&, K2 ®
Rrxr = diag (rj) ngl = : Epx1 © : QtXI - :
8 [“ ] %] ]

= o

%yii"““" Flegagmy r v lagn tley

Vo, = tu+te, +] €
L ¥y Rt

wy Dagry = ey Loyt + ey ey bty

Note that the conditions } 0, = O and ] €y = 0 were used in forming the

above relationships, but the third condition Z Bj = 0 has not yet been used.
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a ~ ~ -~

let B8, 8, ¢, ¥, ¢ad v be the unbiased estimates of the parameters of

the model r«taining the conditione restricting the parareters. That is

1'§ = 0, 1'0 = 0, 1'¢ = 0. Then the normal equations become
l A
. \ ;E-Jz = u;
2(I_ @ 1)y = ul + § + < ARG + y & ARL
Lir e 1)y =1+«
tme © P T HITE
oA 21\ 2A 'A 2A ~
(1) RAJY = RA'@ + R'§ + Ryl = RA'S + R'[B + y1]
Solving:
(2) RA'[111 81)- =+ Jly = RA'E + l'RA'ARfé + @1] .
rt ~-r rt - r = =

Subtracting (2) from (1)
1y - RA'[X(1' -1 = 8% - L Ra'ARI (B + U
RAjy - RA'[E(1} 6 I )~ - Jly = [R" - ZRA'ARI(B + y1) .

Assuming the matrix [R2 - %»RA'AR] to be nonsingular*

1
r

1

+ @} = R M1 -Lam”

™ >

-1 v - pA': '
R "]1[RAy - RA'Z(I 8 11)y]
and

1

) R, - 1 -1, _ 1., -1-1 1
(I -2+ vl =g=(I-FNR(T-ZAN R IR, - 2T, 03)]) .

This is the first time the condition z Bj =0 or) éj = 0 has been utilized,

and it is used here to eliminate V.

-1 1
K= [E‘}é ® Ir) Tt Jr*rt]x *

*See Appendix.
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Note that RAL(T_, - —f-(:t © 7 )IAR = RII - -];A'AJR . We assume

e,.. v NID(O, 02). Hence,

i3

-1 1

B v NIB, oo ~ DRI - ;A‘A)']‘R'l(z - -ll-_-J)l .

1l

Likewise,

21 1 »
¥ '\:N[v_c.,‘o 1_‘(I - rJ)] .

We shzll be interested in block effects at xo, so we seek the distri~-

bution of K'j + 6_.,(:‘:0 - x.j) , and since x_j = x y for all j and j', the
¥

vector o block effects at x, is k + (x0 - X,

0 3

~ ~

J‘
)8 . letting Zy = Xy = X,

0 3’

we seek the distribution of 5 +z,8 .

If the incependence of ; and é_ is not apparent from the manner in
which they have been constructed, it can be easily verified by matrix
multiplicaticn.

1 1 1
ve - - = - —
Aalt r e @I, @ T ree] =0

Hence,

2
0

- 1 1,1 -1 1
K+ 2z (I - SAR) RIQ rJ))

~ 2 1 1
OQNN(E+ZO§_,0(I rJ)[tI+z

.~

i
.

A'A)-lR'l(I - %J; will, of course,

The matrix (I ~ %J)R-I(I -
figure heavily in the solution of any problem involving bluck differencec.

Some properties of this matrix are explored in the appendix.
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CHAPTER III

AN EXACT TEST FOR THE HYPOTHESIS

IN THE SPECIAL CASE

In terms of the parameters «£f Chapter I where Yij = | + ei r vj +

Wxij + ¢jxij + eij' a statistic is desired to test the hypothesis that

+ %

v 0¢j = 0 for all j . In terms of the parameters of Chapter II, this

3
hypothesis becomes Ky + (%, - x.j)Bj = 0.

In the special case of equal covariate block means where Xy .4 =
%, = X, 30 = zo , the null hypothesis of no difference between blocks can

be expressed parametrically as

Hg: 5+zo§=g
vs. Hy: 5+zog7‘(_) .

From the work of Chapter II we see that

- ~ 2 1 1 2 ’ 1
K+ 28~ NIQ, 0(T = ZINET +2zM (T - 2]

-1.-1

1 %-A'A) R ~ . Thus under the null hypothesis

under under H, where M= R (I -
- - 2 1. ,1 2. 1 ..
5+zo§'\-N[Q.O(I-rJ)(tI-l»zoM)(I-;J)l .

To test the null hypothesis, then, we seek a statistic with a well
known (i.e., tabled) distribution under the null hypothesis and with
expectation under the alternate hypothesis dependent on (x + :og) ‘(k + zog)

or on (k + 8,8)'Alc + 2,8) where A is a positive definite matrix.

11
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Such a statistic is available since

1 iy oyt 2.1 - Lol 8) &yl
TR MG et 2 g T (L - G OME = DT 20 Y Xy (a)

where

1 1 2 1 1 -1
Az,) = -2—03 ( + zog)'[Z-\I +25(I - ZOMI - 2] “(g + 2,8)

The matrix of this quadratic form is a nonsingular generalized inverse of

the variance matrix of the random vector ¢ + zog .

To verify this distribution note that

1., .1 2 1. e 11 2, _ 1 _1 21
(I~;J)[E-I+ZOM](I—;-J)-(I rJ)[tI+ZO(I rJ)M(I rJ)](I rJ)

and recall that when a vector
1 1 1
wt = (I -Z0Ww ANy, (T-2I)VT-23]

then

-1 1 1 -1 1 2
*ly X = - ! - v - - T
w w 2 w (I J) (1 Jiw X 1 .

a r-l,-]‘z-(g'v- u)
o

L
2
o

This statistic is independent cof the mean squave error so a true
P-statistic can be formed whic.h will eliminate the necessity to know the
~error variance 02 or t» estimate it from other information. The independence
follows from the fa?:t that the sum of squares for error is constructed
orthbgona]. to those for x and those for g . Mence, MSE is independent of
an, function of the ; and Q vectors.

Having produced a statistic which will test the hypothesis, we would
be satisfied if we were interested in on.y one value of X(or Z). But,
of course, we wish to praduce a set of x'e for whi h the null hypothesis
can be rejected. It is in this nqard that the statistic 'r(zo) becomes

unwieldy.
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Note that if Cr-l is a critical point for x2 statistic with r-1 degrees

2
cr-l

for the 2 points at which T(2) equals the critical point. With those values

of freedom, then we would be interested in solving the equation T(z) = ¢

of Z we could deduce the set of points for which T(z) > °2cr--1 from the

continuity of T(z).

Decompose (I - %J)M(I - %J) into eigenroots and vectors by letting

1 =0
1 1 xl ;
- - - - = ' 5 = = '
(T -2aMI-20 121 Yyl u! by, =1 i=14
Bidg, =0 ig#d

Note that there is one zero eigenroot which corresponds to the vector
1

—_1.
/;-

Then T(2) can be expanded in terms of these came eigenvectors.

" " 1 2 r-1 -1 . .. _ .
T(z) = (¢ + 28) '(E I+2° § YiRui) (< + z8) _
i=1 '

- -~ Jr=l -1, N
 + 28| } (% + zzYi)gigi + %_-:": }}') {« + 2B)
i=1

N -~ fr=1 y.u:
c+ 2| I 5t

i=12Yi+'€

(c + 28) since (¢ + 28)'(11') (: + 28) = O

PS 'A h' Py 2A ) 'A
. relglypie t 2"5_}’.;_'25'_.8. +z 8"k
2 1 :
iml L P

Each of the r-l1 terms is a ratio of two quadratic functions in =.

Hence, if r=2 there would be only one term and we could soive the equation

2

T(z) -0 C!’.__1 getting at most two solutions z, andz ., zc LK We

1 1 c2 °
would nead to check the magnitude of T(z) and any one point:. probably T(0).

2
Without loss of generality assume thag T(0) <o Cr_1 . Then if 0 ¢ ('cl' '02,
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where z is a maximum or minimun of the function T(z).

B[ rE i .
S nul i B4 | waih Y] B e ifc'gdc .
m 2¢ "By t t t J

The discriminant = (—t- - yg'é

and

Hence, if E'_ﬁ_ # 0, T{z) has two extreme points z2, < 0 < L and the
single extreme point 0 if é '_é_ =0, '

If r=2, one of the extreme points yield a minimum of T(z) = 0 . If
r> 2 it is doubtful that T(z) will actually attain O .

Then, if E'é > 0, T(z) has two real extreme points and we can sketch

the illustrative curves of Figure a.
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And if é'é < 0, T(z) will yield curves such as those of Figure b.

(14
> 1R

> 1A>

<|

0
z
Figure b.
N | B8 .
And if k'8 = 0, the shape is determined by whether - < tk'k or
8

té'é < - See Figure c.
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In all of these figures a critical point for the statistic at any

Zz, is thre point (zo, °2cr-l)' Thus a critical curve for the function T(z)

would be a straight line ozcr_ units above the origin. Any horizontal

1
line which intersects any of the curves intersects it twice giving rise to

end points of a critical interval (z ). [The only excertion to this

Y cl’ %e2

generality would be a line f;- units above the origin in Figures a. and b.
which would produce a critical interval of the form (-, zc) or (zc,+w).]

Let QT be the set of z's such that T(z) > Gzcr-l . That is, if
2y € Oy + block effects are significantly different when Z = z, - let v
be the totality of points on the real line.

Then when Y= Vi for all i,‘i'. the set QT = (zcl, zcz) or
QT = U - (zcl, zcz). The symbolism U - (zcl' zcz) is used as shorthand
notation for (-=, zcl)\J(zcz, +=), the union_of two open-ended intervals.
No distinction will be made here between open and closed intervals which
shall be justified only by saying that T(z) = Ozcr-l only on a set of z's r
of measure zero.

The above reference to infinite values of the covariate occur only

for completeness in consideration of the function T(z). As in any regression

- type problem, we are not justified in extrapolating our results beyoné the k

range of the covariate actually covered in the experiment. We are even more
restricted in this particular model, and should not place much weight on
covariate values beyond thé range covered in each and every block. Hence,
our interest in T(») is as an unattainable limit point rather than an

asymptote.

Thus far we have considered only the situation when all the eigenroots

are idantical. When the roots are different the situation is much more

complex. Let r=3 so that (I - %-J)M(I - % 3), the covariance matrix of B,
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has two roots Yl and Y, such that Yl‘# 72 . Then

(ﬁ'gl)z + Zz(ﬁ'gl)(é'gl) + zzté'gl)z

2
LR
('u )2 + 22(6'u,) (B'p) + 22 (R'p,)
=52 = 8278 by = b
2 1

Y22ty

T(z2) =

2
+

If T(2) is set equal to a critical value the resulting equation is

of 4"'h degree in z. ‘That is, we could have four values Zy 22, Zas and z,
such that Q= (zl, zz) U (z3, z4) or \) - [(21, zz) U (23. 24)]-

When there are :hree different eigenroots_ equating T(z) co a critical
value produces as many as 6 critical z's. Then the set ﬂT could have the
form (z-l, z,) VU (24, 24) U(zg, 2,) or U - [(zyr 2,) U2y 2,) U (25, 26)].
Likewise, when ihere are r-1 different eigenroots, there can be as many as
2{r-1) different critical z's.

Consider the following example.

Example 1. 1let
2 ’ 1l
o-l:r-B;t-53v1=5:y2-l.

by w1, <1, 05 5wy = ==, 1, -2)
z o 3

X

" = x-j' + for all 3, 3° .

That is, this is an example of the special case of equal covariate bloc);

-._(2/5-3.’2’ 23 + 32 _fs')
< 12 ' T2 ¢T3

o (Bl Aoph £

s ey e ey .

s
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Let
WA 2 A A a 2 2
[} [} ] ' -
e+ 220ty By ¥ BTy 2 2, g5
2z° 4+ .2 22° 4+ .2
and let
'u? v 22('u) B'u) + Byl 2
< b S By’ 'R Hy = U z° + 22 + 1
Tz(z) = ) = 2
z2 o+ .2 z + .2
Then

JORE N R ENCRT VAN E

.-~ where A = 0 when E + zg = 0 since 02 =1,

The functions T and T, each have the shap: of a T(z) function with

:_» idéhtiqal;roots as previously discussed; but their sum does not (see

fffiguré_I); {(The- i{llustrations with Roman numeral: appear in Appendix II.)

1 ﬂ,.lﬁithﬂg;sighificance level of .10, i.e., a = .10; Q. = U - (-.53, -.31)

57; ~‘(.61;ii.4);,?Tﬁé'u?= .10 critical line for xi is shown on Figure I also.

."-Tbe:ml(z) an6 T2(;) cruves can be individually compared with that line.




CHAPTER IV

INTERPRETATION OF EXACT TEST RESULTS

Not only is it difficult to solve a problem for QT in this special
case of equal covariate block means when the eigenroots of the covariance
matrix are different, it is also difficult to interpret the solution.
(Such a solution is even more difficult to find in the general case, as
will be seen later.)

In an attempt to interpret QT » visualize r lines witb intercepts «k 3
and’ slopes Bj . Unless a set of r straight lines have exactly the same
slcpe they will become “"infinitely" far apart as |z| approaches ®, So in
deciding how to answer the question "Are block effects different when
Z = zo?" or "Are these straight lines different at 2 = zo?", one must use
the magnitude of z, as part of the judgment criteria. The larger lzl becomes,
the more difference between the lines it takes to be "surprising."

T(0) = té'é will be recognized as a test statistic for "block mean
effects.” Likewise T(») = é' [R(I - %A'A) R]8 is the usual test for block
reagression effects. It is essentially this test to which Cox [1] ﬁef.ers.

In this problem T(») is the value of the ’test‘statistic when Izl is so
- large that the fixed effects, or intercept effects, « 3’ are completely
“*washed out." Of course, in practice, this point (Z = =) never occurs
bscause the upper and lower values of z at which T(2) i-s meaningful is »
limited by the range of the covariate within each block in the experiment.

If T(») > ozc -1’ i.g.. L “‘1‘ then the r lines in question have

:"cafhmt" o: nigniﬁcantly aifferent” alopen. The r lines are

20
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restricted in the sense that the sum of their slopes is 0 and the sum of

their intercepts is O. For examples with 4 lines, see Figures d. and e.

- :
* \ \\

Figure 4. Figure e.

In Figure d, although the lines do not meet at a single point it

would not be surprising to find an interval about z, in which block

k

differences are uncertain. Whether or not that interval would include the

point 2z = 0 would depend on whether or not 71(0) < ozcr_ T(0) will be

1
recogr.ized as the usual test for the ¢ effects. Figures d and e have been

drawn with the same Kj values so that if T(0) < o“cr_l

is also less than czcr_l in Pigure e, and it would be logical to assume an

in Figure 4, T(0)

interval about 0 in which the lines would not be considered significantly
different.

Similarly if T(=») < czcr_l then tﬁe r lines will have approximately
the same slopes; =2nd since the slopes are restricted to add to zero, the
lines will all h:ve slopes very close to zero. s3ee Figures f and g for

axamples with 4 lines.

———/ et
___ﬁ-——}

— — / +6

— -8

Figure f. ’ Figure g.
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These cases are more difficult to evaluate subjectively because the

effect of k, "washes out" as Izl increases.

3
I£T(0)> czcr_ (perhaps Figure £) then there would probably be an

) 2
-1 However if T(») < ¢ cr-l and

T(0) < ozcr_l (Figure g) it may be difficult to understand that there could

1
interval about 0 in which T(z) > czc

still be an interval (in Figure g in the region z < 0) in which the lines
could be considered significantly different. If this is so it is because
the lines spread apart faster than we would expect with regard to lzl. Note
that the lines are farther apart at -§ than at +§ in Figure g,

Scale has ihtentionally been omitted from these figures to force
subjective thinking rather than mathematical manipulation. Certainly any
decisions must take scale into account. The purpose here is to snuggest
that the logical systems for evaluating whether a set of lines are appreciably
different at 2 = Z4 relative to izol give rise to single intervals of
difference (as in Figures f and g) and to complements of single intervals i
of difference (as in.Figures d and e).
| Stated differently, let nk be the setvof z's for which a set of lines
is considered to be different by some criterion k. If = ¢ Qk' z' ¢ nk,
and z" ¢ Qk' then we would want 2 ¢ Qk if z2' <z < 2", (Figures 4 and e.)

Ad if = ¢ nk. 2' e Q , and 2" ¢ ., then we would want z € Q, if

k' k k
2' <z < 2" . (Figures f and g.)

This desire for Qk to be of the form (2,, z,) or v - (z,, zz) arises
from placing equal weight on each of the lines, or on e#ch contrast of
the lines s'nee they are restricted to add to 0. And, indeed, QT is of this
form when AP D for all i and i'.

However, T(z) does r>t place equal weight on each contrast of the

Bj's unless y, = v,, for all i and i'. Thus 0, is nct necessarily of the




form (z,, zz) or U = (zl, zz). Throuch the matrix

1 - 1 -1 -
(I - Py JIR 1(I -3 A'A) "R l(I - %J) the statistic places more weight
on the contrasts about which there is the most information. FPor clarifi-

cation, rconsider again Example 1 (page 18).

In Figure II (Appendix II), the lines v

2/6 + 3/2 B - 32
v, = +
2 12 5

shaded area represents U - QT' the z values at which we cannot be certain

12 6

z, and Ve = =t Ty z are plotted. The

W -3/  Jfox32

of block differences testing with a .10 significance lewvel. Because of

the By = 0 and § €y = 0 restrictions, the 3 lines of Figure TIi are redun-

dant.

Tn Figuwe T77, *he two unrestricled lines Wy = ;1':‘-’1 + é,_'g_lz = 8 t =
and w, = g'~2 + é'gzz = 1 + z are plotted. The region of U -~ T is again
shaded.

In Figure IIT, where the two lines are perfectly parallel, the
multipie QT-zonc is particularly enigmatic as an answer to the questicn

"For what values cf z, considering lz| » can wy and w,_, be considered

2
estimates of zero?"

It ies understandable that when 0 is in 9'1‘ points on either side of
0 might not be, due to the "washing out" of ¢ with increasing iz] . But
that even larger values of lzl should indicate block differences is
difficult to accept.

The result is due, of course, to the difference in roots causing
more emphasis on w, as |z] increases.

The uneqﬁal weighting reflects the fact that we have more information
about E'gl and f:!'gl than é'gz and é'gz Certainly this ability to
concentrate on the qualities about which we have the most information can

be a desirable property for a testing statistic. But when there is equal

—']

i i
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"interest in each of the contrasts betwee.. effects this property may not be
so desirable.

In terms of power, T(z) would have higher >ower against alternatives
which make (5'21‘+ zé'gl)z large than against alternatives which make
(5‘22 + zg'gz)z large, whereas equal power against both of these types of
alternative hypotheses would be desirable.

If we could control ;he covariate Z we would have equal information
about each of the contracts. When we don't have equal information, i.e.,
equal roots, we must consider whether we prefer a more exact answer to a
question we are only approximately asking or a more approximate answer t»>
the exact question we are asking.

Recall that when we first sought a statistic to evaluate block diff-
erences (page 11) the fiist choice was ooe with expectation dependent on
(k +2.8)'(k + 2,8), and T(2) with expectation dependent on
(x + zg)'[%-l + zz(I - %-J)M(I - %-J)]-l(g + zB) wis selected only because
the exact distribution of T(z) is tabled.

let us look at a statistic with expectation dependent on

(¢ + 28)'(x + 28).




CHAPTER V

AN APPROXIMATE TEST OF THE HYPOTHESIS

IN THE SPECIAL CASE

As in Chapter III, a test is sought for the hypothesis which is

expressed parametrically as

o
.
1R
+
N
™
n
10

@
oM
[ Xa)
+
N
>
RS

- - 2 1 1 2 1
E+zong[E+zo§ ' O (I-rJ)(tI+zoM)(I rJ)]

where
M=R I - %A'A)-lR_l
and
K+ 2,8 = (H+ 2Ly
where
1 P S
Hort = [£2 0%, ~ g Lt & 9,)
and
L= (I-20MRat(z, -1, 833 .
r d' "rt t r r
Let

s*(zy) = (< + 2,8)"'(x + 2,8) = y'[H + 2Z,L}"(H + z,Lly .

2
T(z,) is a central x? under the null hypothesis. S*(z) is not a X,
but it is "central" in the sense that u'(H+z L]}'[H+z Lly= (c+2,8) "' (x +2,8)= 0

only when  + z,8 = O, where y = E(y) .

‘25
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Although $*(z,) is not recognizable as any single distribution, it

can be dscomposed as a sum of independent x2 gtatistics. 1lLet

r-1

[+ 251" (M + 2,L] = 121 §L.8!
where
&i&j_ =1
&i&i'- Y ig4,

; being 2 vector with rt elements. Note that the rank of H + zZ,L is r-1
30 only r~1 of the rt eigenroots are non-zero.

We know that the non-gzero roots of (i + zon) '(H + zOL) are identical
to the non-zero :ootsvof (H + zoL) (H + zox.) ‘. And (H+ z,L) (H + aom ''w-
r-ingreda-Lome- 2012 - 22 , vhich ve recall from
e,
1 ( + ’07‘)!121 . Hence the set of (- +z Yi) 's is identical to the

iml
set of Ei'l and we shall w,e the notatien 1 g \A

). In the consideration of T(zavo let (H + z, L)(H + Z, L's=

since it shows the
o pendency of the roots rn 8 -
Therefore,

A, a2 Tl 2
8(zg) = ¥' }1: [+ movy)tytile = 121 (g + sov)¥'t: iy

whare
FJentetag, -
o "1‘1’, » 1;*1

That is, cach of thess r-1 terss is proportiocnal to a x2 statistic with

~ one dagres of freedom snd all are indspendert. That A, = O wnder H,, the

hypothesis that « + & g = 0, follows from the “centrality" ot 8*(:0).
That is, '({ ‘t‘t‘i’! 0w p'ttiyeo .
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Being a weighted sum of independent x2 statistics under H,, the
distribution of S*(zo), under Hy, can be approxim-.ted by fitting the first

two moments to a multiple of a x2 statistic. Since

r~1
2 1.2
Els*(z))] = o % (Z+ 25v,)
S*(z )n(z,.)
v 0
E =n(z,)
2c,1 2 0
o 2(€+ Yizo)

where n(zo) is the number of degrees of freedom of the x2 statistic which

is being approximated. Then we wish

S*(z.)n(z )
Var 0 9 = 2n(z)) ,
r-1 0
02 y (l‘+ Y 22)
. t i0
=]
or
2
[n(zo)]
_ * =
4[?(.1-+ z2)]2‘ Var §*(z;) = 2n(z;) .
O L' T Yi%
Now
r-1 r-1
2 1 2 1.2 4
. * = b ! ! = ' g
var s*(z) g Var(y,zq + Py'%, 2.y E Ci% * ¢ %
r-1 -l
41 4 2 2 2 r-1
= 20 [%0 Z Yi * T % Z vy ¥ ")
1 N
r-1
- 2 1l .2
% (vizg * ¢

-1 2
2 1
% (vi2 * Fﬂ
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Hence
r~1 r-1
2 r-1 2 r-1
(zo Lovg*+ 5 ) {zo Loyt 5
nlzy) = = 1 § 2 r-1
r- r- r~-
1.2 4 2 Z r-1
L gz + D 2o L Y t22 ] v+
i i i t
[ r-1 2 1
2 r-1
(zo z Yi T X
= -l r-1 r~1 r-1 71
{?2 Dov; + = l) ragle-1 T y2 oYy )
"0 i t 0 - i
i ]
or
(227 + 32
(z ) = r-1 °o_t
o oy +H2e A6 -7y |
0Y t zO Y Y N
where
- 1
Y = 1 (2 Yi)
and :
=_ 1 (.2
Y= 71 (z Yi) :
Let
= =2
§=vy -y

and since there are r-1 yi's all greater than C

(E Yi)z

by

(L Ly f
=2 -\~ i = i vy =2
YRR LY T (-

0c6 < (r-2)¥2

okl
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llence,
n(zo) < r-1
and
)
n(z.) > r~1 — =
0 - - .
Yz + (r-Z)\(2

"(ZU) = r-1 when zy = Oorwhen$ =0 . 6 =0 corresponds to the case of

equal eigenroots. lLet

S*(z.)
0
S(zo) 22_ . 1 .
of Tt
Then
n(z.)
1 0 2
2 S(zo) r-1 Xn(z )
a 0
and

S(zo) = T(zo)

when vy, = y,, =y for all i and i’ .

i
when the roots are equal both S(zo) and T(zo) give the came result.
When the roots are different, T(zo) becomes very cumbe;some and can yield
results which are difficult to interpret. When the roots are different
S(zo) compensates by varying the critical point, the amount of compensation
dependent on 2 A and }‘ yi which are, respectively the traces of the

matrices (I - -} nr Y - -i'_-)\’l\) lpl

1 -1 1o, =1-1 1 .2
(1= 23R (T = AN R (-2 D17

(I =10 and
r

In order to discover the nature and extunt of the S(z) statistic's

compensation for diffcrent roots, it will be necessary to examine the

. r-1 2
function ;7;—3-xn(v )
0 “0
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CHAPTER VI
ANALYSIS OF APPROXIMATE TEST

The function S(z) has exactly the same shape characteristics as the
function T(z) when the roots are identical. That function is discussed
fully in Chapte; I1I. However, the critical function for T(z) with
identical roots is a straight line with ordi--=te ozcr-l,a where o gives

the significance level of the test, whereas the critical function for S(z)

2 r-1

ETET cn(zha . To analyze this critical

. - . 2
is the function ¢ Kn =g

(2)
function let us consider the variation Of‘cn,a with n . The functional
notation showing-that n is dependent on z will not be used here. From

the previous chapter it should be clear that n is depéndent not onliy on
z but on r, t, and the values of the covariate X used in the experiment.
At this point attention should be focused only on the variation of Cn. a
with n regardless of how or why n might be varying. The notation "n(z2)"

will be resumed later.

C is defined by
n,a

'

Cc
n,Jd
J' q(x-")clx2 - l-a .
n
(o} ’ '

The cutrves nlcn 've'rsus n aru plotted in Figure IV for seven different
significance levels. when a is small -rl; Cn decreases with n . When a is
very large %Cn increases with n . When a = ,25 the function ;]"- C" is vixy
nearly'a straight line. (Actually it is concéwe downward with its maxi tm

at n = 2 ) Now if '-i- cn» could be well approximated by a constant, as is

30
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true for . = .25 and for other significance levels in certain rangec of n,

finding critical poirts for S(z) would be very easy. Note that the rritical

2l C 02C because if % Cn is

. 2
functicn for S(z) becomes 0 K =g =
n n n-1 r~1

-

constant for all n we may use n = (r-1) and it is equal t- ;lT C.
] e

flence if the desired significance level for * 2 test is .25, as might

-

EN

be the case if the more serious testing error is to fail to recognize that
the blocks are different, that is, Type I errors are tolerated to decrease
the probability of Type II errors, then S(z) can be evaiua :d against the
: . 2
straight line ¢« C

2 .
. Wnere S(zo) >0 Cr—l » the point z_ can be considered

r-1 0
2 . .
to Lelong to the set Qq , and where S(zo) <g Cr-l , the point z, can be
considered to belong to the complementary set U - Qs .

Unfortunately the function % Cn is not so well approximated by a
constant for small values of a, and when n is small the variation can be

ccasiderable. To evaluate the amount of error introduced by using L Cr—

r-1 1

rather than the correct %-Cn'. Note that

2 1 2 1 1
(U RV — = - — . r- J - ———— .
¢ oE 1)n Cn o (x 1)r-l Cz-l +o 1)[n Cn r-1 Cr—l]

For small values of 2 the quantity in brackets is always positive
since n « r-1, and it increases as n decreases. To find any bound on this
error it is necessarv to find out how small n can become.

From a theoretical standpoint it should be pointed ovt that a values

af .50 or .7% vill wake the quantity in b.-ackets negative, but the curves

are s+l monetonic and the maximum error would occur when n i5 at its
micimum value.  From a practical point of view, it is difficult to imagine
any witaation withh =uch a large u where one would not be ratisfied to

r-1
Approaxtmare —-- 0 e O

\ n o r-1
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In Chapter V it was shown that n(z) is bounded below by 1 . This
lower bound is not dependent upon the r, t, and xi%‘s of the experiment.
When chose factors are incorporated, a much higher lover-bound for a(z)

can be obtained. Ignoring the practical limitation which the xij's place

on z, a lower limit for n can be achieved by letting z approach infinity

since n(z) is a monotonic decreasing function of lz] . Note that
2- 1,2
. . (z%y + =) -2 -2
IL1m1t n(z) = Limit (r-1) t = r-1 =L — = (p-1)
zl +> o lzl -~ 2~ 1.2 4 -2 =
(z"y + zﬁ + 28 Yo+ 8 Y
That is

n(oo): 5‘ 2—
Yy
where
r-1
Iy, =trr - 2orta-Lany i -1
i 1 Y X Y
and
r-1
2 1 _,.-1 1. ,..~1-1 1.2
Z y; = trl(I - 2R (I = SA) R (I -2D]1° .
1
Hence,

1 < n(=) < n(zp) <n(z) <rl1 ,

where zp is a practical upper bound on lzl imposed by the values of X, 5
used in the experiment.

Referring again to Figure IV, with small a tha function Cn is a

(z)
monotonic decreasing function of n{z). So since niz) is a monotonic
decreasing function of Izl. “he critical function for &£(r) will be a

monotonic increasing function cf |z| .
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The S(z) curve will be shaped as in the equal eigenront case of T(z),

however, the critical curve for $(z) which shall be called UZKn(z) is not
, . , 2 . .
a straicht line, as is o Cr—l . The curve szn(z) is symmetric and when

a is not large, it is concave upward being asymptotic to the horizontal

line represented by 02Cn(w) . See Figure i.

Figure 1i.

It should be pointed out that the critical curve is always symmetric,
bounded and asymptotic to the line corresponding to n(~), but its shape
need not be that of Figure i. The only ekception to its being concave
upward (small o) or concave downward (very large a) is the case of a = ;25 .
In that case, the curve will be bounded above by C

b

of 2 and n(»), 1In other words, when using a = .25 if n(») < 2 find an

where b is the maximum

upper bound for the critical function with 2 rather than n(«).

Since the critical cvrve based on a x2 statistic is virtually a
straight line when a = .25, the point may seem trivial. However, when 02
is not known and use is made of a F-statistic, the shapes-show a liﬁtle
more variation as the degrees of frecdom for error change. The x3 statistic
discussed here is equivalent to the F-statistic situatién with infiﬁite
degrees of freedom for error. “bviously, unless the dearensg of freedom

for error ain very small, tne situation will be similar to that illustrated




g T U N .

in Figurze 1. ™e situvation is discusged in Chapter VITT and i only broughn

PRt

up at this tire to warn the reader taal the critical function for in 5{w}

statistic, though hounded, may not always have the =ame shape.

So0lving for the points Zn and Zb in Figure i, the intersections of
[=

S(z) and ﬁ“Kl(/) can be done iiLevatively, since the intersections of S(z)
, Vi 3

with any horizont sl line sre found easily. That there micht be more than

two intersecticn: is disgn 3 bnlow.

Consider o fow oxe

arcbhlews . Beeonsldayr Sramnle L, presviousiy

Examele 1, Figure V.

v = 2
A cy o fE o RN
(& + 78) g+ uio= gty 2§'Y1)2 TR AR LRI
‘let
(k -+ :’é)'fflf\’;ﬁ’: - 73' » -,33 -z + .25

5, (2) -
1 =7 ]; '6?42 + .2
T

ot jet

22 4+ 22+ 1

z o+ .62 + .2

30 that

(c + 28)" (¢ + zé)

L2l ez 128

1 A 2
t .62 + .2

Sa) =

= sl(z) + sz(z)

2 + .2)2

[ 3 |
—~
N
e

(.62

K. S SO ST
L Q? i, : 2 4
= e B8 ez v n? e e
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n(0) _

r-1 1

ne) . _ (&% .

= .693
-1 (6)2 s .16 52
n(tl) .64 _ o
r-1 .64 + ,16 '
n(t.5) .1215 ‘
-1 = T1315 + .01 = -9%°
c =C =C ~ 3.4 K ==l . N 4.9
n (o) 2(.693) 1.386 n(®) n(ex) n(=) '
c =C =C, .~ 3.8 K =-Ib ¢ X 4.75
n(+l) 2(.8) 1.6 n(+1) n{xl) n(1) *
o = C =C 4 4.3 K =L . N 4,65
n(+.5) = "2(.925) 1.85 n(z.5) - n(x.5) ‘n(+.5)
Cio) = Cp = 4-80 ‘ K 0y = Cpoy = 4-60

The component functions sl(z) and Sz(z) are graphed along with S(2)
in Figure V only to allow comparison with Tl(z) and Tz(z). It is never
necessary to break S(z) into r-1 parts.

Although Kn . the critical function for S(z), is not a horizontal

(z)
line through the point (O, cr-l)' the error incurred in such an assumption

is small in this example. Let

12 '
s(z') = oK 0y = 36 = 22"tz 1 1.2
n .62'2 + .2
» ‘/
2' = 1 "1 ;;0032 = 1,59, -.27

Let




PSP PN

R O e

22"2 4 2" 4 1,25

2
5(z") =0 'K = 4,9 =
n (=) 62"2 + .2

1+ v2.015

z = 1.88

= 1.29' -.22 .
With only two calculations we determine that
(-.22, 1.29) C Qs c (-.27, 1.59)

where the symbol Qj is used to represent the set of z's such that

s{z) > Gan(z) . Whether or not more precision is justifiable considering
the approximate nature of the distribution of $(z) may be subject to debate.
7f more precision is desired in the upper end point of the interval, cne

might solve for Kn and S(1.4).

(1.4)

n(l.4) _ 1.89 _
=1 ~ 1.8 + .615 " ' °3

Cn(1.4) = C1.506 = 3-67 Ki(1.4) = 753 = 4-88
. 2(1.96) + 1.4 4 1.25 _ ~
S(l.4) 1.176 + .2 - 78 < Ky1.4 = 488
and
§(1.29) > X (1.29)
Hence,

(=.22, 1.29) C R, C(-.27, 1.4) .

In a similar manner any desired degree of precision can be attained
with regard to either end point of the interval of the z's which constitutes

ﬂs .
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Example la.

5
Example 1, but having a ratio of 1:2 rather than the more extreme 1:5

Assume now that Y, = Z'ami Y, ® g', maintaining the ; = %-of

ratio of Example 1.

Then letting

2
S(z) =0 Cz__.1 = cr_1

yieléd. the same interval (-.27, 1.59). But

sad0_ 9 1
25 25 25 '
so that
n(=) .36 _ 2 _ 4.226 _
-1 - 4@ - .9, cl.8 = 4,226, ¢ Kn(w) =3 = 4.7
Setting
S(z') = 4.7 z' = -,256, 1.47

And if z% < 1 from theoretical or practical considerations, we

would look, not to n(») for an inner limit, but to n(xl).

02K

nxl) = 4.66 = s(z")

" 1+ vl + 1.0125
2 1.592 = -,262, 1.52 .

And due to z2 < 1, we would state only that 2z values greater than
~.,26 or -.27 result in significant block differences. Greater precision

can be achieved, of course, from iteration.




Example .. Figure VI.

2 1 1 3
U=1:r’51t=4rYl=ZlY2=EIY3=Z'Y4=lr
- 5 30 25
Y=g+8=%4 "6z~ 078
A'A A'A A A 3
g'8 =6,k =1, k'8 =-7
Then if o = .25,

62'2 - 32' + 1 2

s(z') = 52,1 =0C, ), .05 " 5.385
8 2
2! = =10, +1.24
"2 L]
v 62"2 - 3"+ 1 2 o _ 4.534 _
sz = =% 2.1 %% T 7833 %3337 833 C 5.44
8 .

2" = -.11, +1.26
U -(-.10, +1.24) C 2, C U =(-.11, +1.26)

And if o = .05,

z' = (-.50, 47.5)
S(z") = (-10.1, -053)
(-10.1, -.53) €@, € U -(-.50, 47.5)

Then if -zp <z« zp where zp is a theoretical or practical

on z and =10.1< -z <z < 47.5
P p

(-2, =.53) C 0 € (-2, -.50) .

limit
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It has been assumed, thus far, that Kn(‘) and S(z) intersect at only

two pointa. % shouald be clear that this will be the case unless the two
curvns closelv parallel aach other where Kh(z) has the most clope. The

follwing counter example is given.

Txamole 1. Figure VII.
- 1 5 2
r=7, £= 3, ‘,f=—2‘,(5=-6—,0 =1, o = .05,
2= 10, 'e = 4 'E =0,
2
N 102" + 4 ]
S:(Z[ = i) '-i' 1
=z" 4+ o ‘
y 3 !
5{0) = 12 Kp(O) = 12.6 :
Il sy N — -
! = 14,2 heusy T 13.5
(ni o= 20 ¥, . = 20.2
n{w}

-+

Thiz ‘s a valid mathematical counter example to a contention that
o, ™t be of single interval form, however, two practical points should
be mide. First, the { value for this example is very, very high. This
mean : that +the roots are very unequal, possibly 5 roots equal to .0925 and

cme venr vroal to .54 . With this much difference in the roots it is

doub  Sul “hat the a;uvroximation of the distribution is very good. Aand,
seco1dl, | :tle real arror would be introduced in this problem by reporting

any iatsoever,

mompr 0! e Treciod fate of Tquad Covariate Block Means.

e T L Ry

7n» all blocks, j'yi =1, 2, **+ , r, to simplify

o

- .

e e e, we hove found two tests, or criteria, for generating sets,
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Qk' of z values for which blocks are significantly different. By adding

x . to all z values we form the sets of all x values for which blocks are

3

significantly different. That is, if .67 ¢ QT' then (.67 + x.j) € FT .

And if .67 ¢ QS then (.67 + x Y e T_ .

lj S
The sets FT and QT are found using the statistic T(z), a sum of r-1

fractions whose numerators would add neatly but whose dencminators contain

the nunber Yy which may differ from term to term; and T(z) V ozxi_l .

The sets l"s and QS are found with the statistic S(z) which averages

the yi's, substitutes y for each A\ and adds the terms. §S(z) is approximately

2 r-1 2
n(z) ‘n(z)

|z| , the differences between roots, and t.

distributed as ¢ » where n(z) is a correction factor based on
lLet us speak now of a third statistic, R(z), which equals S(z), but
R(z) v azxi_l . Naturally this approximation is rougher than the one for
S(z) since we know that the first two moments do not exactly fit, unless
n(z) = r-1 . Then the sets QR and FR will be generated by R(z). The use
of the R(z) approximation derives as a simplification of T(z) by the
"unconscious" mathematical manipulation of averaging denominators to add
numerators. Likewise R(z) derives as a simplification of S(z) by letting
n(z) = r-1 . How good an approximation FR will be of FT when the roots
of (I - %-J)R-l(I - %-A'A)—lR-l(I - % J) differ cannot be determined with-
out a great deal of calculation. But limits can be placed on the approxi-

mation of FR to PS by solving z' when S(z') = ozxn where n is the value

m
of n(2) which results in the maximum (or possibly‘minimum) value of Kn over

the range of z. [In general, the limit on the approximation is found»by

letting S(z') = cth J

(=)
The sets PT' Ps. and PR are obtainable from ﬂT, Qs. and QR only when

x for all blocks., Finding PT. Ps, and FR in the general case

j - x.j,

requires some saditional caiculation.




CHAPTER VII
THE GENERAL CASE

Development of a Parametric Statement of the Null Hypothesis

As in the special case, the experimental model can be written as

)

X,y - x.j)

L= .+ oK, .
Y” u+91 KJ+Bjr

(x, .
J ¥ wrj =
. )2 ‘/i(xij - x_j)2

: 2
i=1, 2, ¢ i1 3=1, 2, ¢ r; r, = (x,, - x .
= 1, &4 J r 2y ¢ I; j Vg i3 'J)

however, the Kj used here may appear to be different from the Kj of

Chapter II in terms of the parameters of Chapter I. That is, here

K, = vj + ¢jx-j + w(x.j), whereas in the special case Kj = v, + ¥(x, ).

j 3 3
However, since the special case uses the additional inestimable equation

E ¢j = 0 to solve the normal equations, it should be evident that the
grevious Kj is, indeed, a "special case" of the Kj defined here.
When X = X, the variation in E(y) from block to block is contained
in the expression Kj + (xy = x.j)Bj + (x0 - x.j)w . From this expression
we can eliminate xow, since it is the same in all blocks, and for mathematical

convenience we add x, ¥ . Then the expression incorporating all block

di fferences becomes

Yy oo

g% (xg = X, By = (X - x
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Lat

A7

Pj("o’ = (% - x.j)Bj -k -x

The notation P (xo) is intended to imply that P, is a function of Xq' not

3 3

a product.
r
By taking the inestimable condition 2 (x0 - x.j)B 5= 0 to distinguish
3
block regression effects from the mean regression effect, we see that
r
R j(xo) = 0 . It should again be evident that the special case condition
g Bj = 0 is included in the conditionX Pj(xo) = 0 when x.j = x.j, for all
3 3 1
j and j' .
~ A 2 1
As before Ky=¥,4" Y, and k v N[k, %—(I - <J)]. Just as in the

special case, we find that

1

A A -1 1,0, _ 1
B+¥l=R (I-Z AN A - I 0J7)y .

Then

P(xg) = (I = 3 3) [x T - diag(x, )1(B+ 19) = [x T - diag(x, )18 - [(diag x, ) -x, I]1¢

3 3 3

and

Blxg) = (2 = 3 D lxgl - dlaglx, )16 + 1)

from which we see that
. 2,0 1 L. ... . 1 21
K+ g(x°)~u{5+g(xo). oT = T T+ lxox-dng(x,j))ulxol-diav(x,j)l)(I-; e

vhere

i
3

Ne RMx -2

i v e e = e ALY .
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Let

wxo = (x4I - DIM(x,T - D)
or
2

= - !+ +
on xoM xotDv ML DMD |,

where D = diag(x.j). (Note that on reduces to (xO - x.j)zM in the special

case.) Then

A 2 1 1
+ E(xo) " N[o_c_ + ij(xo), o (I - ;J)(EI + WXO

[ZaY

Y1 - I J1 .

The hypothesis of no block diffe  nce when X = %, be comes

=
[ 2a3
+
o
—~
»
L]
10

@
.
.+
Ll
Fot

X + Blx,) #

10

2. An Exact Test

; . 2 . . .
.t Again, an exact y statistic can be found to test this hypothesis.

1 1 _..-1~ = 2
= J)wa(I ST T+ Pxg) ] v X

Ry = 200 4 b i
2 T x,y) ﬂz[g +Bx)1'ET + (T 1

where

1

1. vl - : . §
A= =3l + PUx )] Ig I+ (T Iw (L -2

20 0

LB

J)]-l[g + Bx,) ],

and )} = 0 under the hypothesis Hg .
Unfortunately when (I - % J)(wx Y(r - %-J) is expanded in eigenvectors
0

the vectors are not independent of x  as in the special case. To emphasize

(¢}
this point the subscript x will be used for the roots and vectors. The
function:l notation gi(gt_) becomes cumbersome as does the retention of the

notation X, which has been used to emphasize the fact that the test is




Ad

made at a specific point and then the inquiries are made as to which X
values would cause the test statigstic to be higher than some critical
function. Hopefully this point has been made well enough to allow the
terminology Vei! and y i to adequately communicute the idea that these
roots and vectors are dependent on a specific value of X at which the test

is to be made. Since

r-1

21 I . '
T-ZaW(1-29 2 f i Yaei Vi
i=1
then
r=l |v ,v'

l -~ ' - -t A A
STm =S+ Rl ) [ v o0l
¢ g i=1 Teg T E

It should be apparent that it is possible for Yoi = Vi for all i and i'
and for all x values only in the special case previously considered.
2
. ' .
Hence, solving for I‘T. the set of x's for which T(x) > ¢ Cr-l,a

becomes a trial and ~rror task which generally involves the inversion of

the matrix

%I + (I -%J)[)‘.ZM'X(DM+MD) + DMD] (1 -%—J)

at each trial.

Recall that we cannot assume that F-I‘. is of the interval or interval
complament form so that finding two end points of intervals in I‘T does not
mean we have found all of I‘T .

Obviously the Tystatistic has the theorctical disadvantages (resulting
from the uneven weighting of contrasts} that the T statistic was found to
have. But in addition, the datermmiration of I‘,i, will be tedious and expensive.
If there was reason to seek a second test in the special case, there is even

more reason in the general case.




Again an approximate test for the hyponhaa: s

Ho K + Lj(xo) = 0
vs. Ha: « + E(xo) #0

can be formulated, which depends on [k + g(xo)]‘[g + g(xo)l.

Let
S (%) = [g + Bx)1'[x + Px)] = y'[H + Lix)1' (4 + Lixy)ly

where

o
it
i
-
®
[
t

and

1 . , . 1
- - — . - f —
L(xo) (1 = J) (XOL D)MRAd(Irt ,It ) " Jr])

t;(xo) is a central x2 under the null hypothesis. S;(xo) is not a

x2 but it is "central” in the sense that u'lH + L(x,)]'[H + L(x;) ]y =

(c + g(xo)]'lg + E(xo)l = U only when k + gfxo) = 0 and again i = E(y).
Like 5*(z) the statistic S;(x) can be decomposed as ‘a sum of indepen-

dent x~ statistics. Let

r-)
(H + Lixg) )" [H + L(x,)] = 121 “eilxilai
where
= ] i =i

[ ]
Litair
=0 iyi
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As in the special case we note that the r-1 non-zero Exi's are iden~

tical to the non-zero (% + Yx*) 's, thus

[H+L(x ) H+L(x )] =2(I-23) + (1-2 )W (:c--l-a)—r:lt s
0 0 t r r X, r —i£1 Yol T Yyi¥ni ¢

wa = (on - D)M(xOI - D)
Hencep
.-1 1
S0 =) T Pty

and

1 2

R ARIEY

(4 1

where }‘i = 0 under the null hypothesis.
As before the distribution of S (x) under the null hypothesis can

be approximated as a factor times a )(2 with m degrees of freedom. Now

2 Tt 1
Blsp)] =0” | (v +3
1=1
and
varlsy el = 20° § (v, + D2 .
so

E -%ﬂl‘-?—“i’ll— - m(x)
o) ( + =)
Z"xi t

and nbwhh to choose m(x) such that

'7 Var —gﬂ.’.‘lﬂﬁr = 2m(x)
o i(v,d + 9
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or
2 4 1.2
m (x)20 2(7/,‘i + 8
7 "= = Zm(x) .
4 172
o 2 Yxi * t
Thus
-1 1 2
ot b Gobt ] [ b
m(x) = 11 =1 1; 7| =1 x12
- . - = - -
= - + =° +
Y v, 4 502 (Yx et by )J (Yx t) Sx
xi t
i
where
- 1 r-1
Y T7T L Yu
i
- 1 r-1 2
Yx = ;:T. z Yxi
= =2
6 = Yx T Yy
-2
0 < §x< (r 2)Yx ’
hence
l<mx) <x1 .
let
*
s = S
Y, + T
X t
then
1 r-1 2
7 5% Y vt Xmix)

recalling that



(g + B(x)]'[k + P(x)]
(1) §x) = - 1
wtE

= ! =
s'(x) T,{(x) only for those x's, if any, such that Yoy = Vi for

all i and i' . Now
(r-1)y = trace of(I - lJ)w (I - -l-J) >0
x x x r
1 2 1
-tr(I-;J)[xM-x(MD+DM) + DMD] (I -;J)

- x2 tr(r - -;-J)M - 2% tr(I - %J)MD + tr(r - %J)DMD .

Iat
Y. o= Ax® 4 A x4+
x 2 1 o '
wvhere
1l 1
Ay = Sy tr(T - SO
2 1
Al = - tr(1 - T J)MD
1l 1
Xol';ftr(I -;J)DMD ;
and
. 1l
P(x) = (I -3 3)(xX - D)oy
where
"l .1, ' -1
G=R (I :A A)Ad[I " (It ] Jt)]
Blx) = x(1 -i-l-J)q -a-inoy .
- r r b4
Let

a

1
I, = (x -

48
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and
i = -(1-23)06
_0 r 12
thus
P(x) =ﬂ1x+ﬂ.o
Then
2,." A' ~ ~ Yy ~ , a ~
XMy + 26, (Mg + k) + (@) +¢) " (L, + )
(2) s}x) = .
3+ O+ D
2 1l 0 t

When ‘W(X) is expressed in the first form (1), it is difficult to see
how values of x affect the value of g(x) + However, in the second form (2),
it .is apparent that S'(x) is again a ratio of two quadratic functions in x.

Again S'(x) is continuous and has at most two extreme points, although
those two points can no longer be expected to lie on either side of 0 as
with s(z).

Looking at i%.i_"_)_ it can be seen that S’(x) takes its "shape" from the

sign of Q = Alllilll - 2A21;I_i(110 + é) rather than simply from -~ é'é as in the
IS (%)

axX

implies that S(x) has a maximum to the left of its minimum.

special case. If Q > 0, then > 0 for very large values of |x| which

a A

-—- =nm

-1

x)
1l

Likewige, if Q0 < O,

.

S'()O Az -1-1
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ll(].["
2 ‘>\+E

T, + &) 'y + €)= 5(0)

S,,{x)

A ' A ~
2y + 0
X, =~
t
10,

Similarly, if Q = 0 and Sr(w) < S,Y(O), S‘;x) is again svimetric about X
but concave downward. It will be noted that

ywwI-%mw

lim lim
S,(°°)=x_>mS;x)=z_’mSY(z)=S,y(°°)= )‘2 !

again the test for regression effects to which Cox [1l] refers.

However, S,Y(O) is not the test statistic for fixed effects. If
x.j = x.j, for all j and j', then S,,(x_j) would be equal to S(0). Thus
i'(x) is shaped much as S(x), and can be easily solved for its two inter-

sections (if any) with any horizontal line. The general critical function

2 r-1 2
m(x) *m(x)

special case. In the special case, n(z) decreased monotonically with |z|

o is not, however, shaped as the critical function for the
80 that when % Cn was monotonic with n, the critical function was monotonic
with |z| . Here the functions %Cn are the same, but m(x) is not unimodal.

Racall that

1l 1
rliyxi.*”{

m(x} = (r-l) 2 2
1 AR A ) )
r-1 2 Yxi * t) * r-1 X Yxi. -1 < Ym‘.

where }: Yoi and Z Yii are the sum of roots and sum of squares of roots of
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the matrix (T - % J)[xZM ~ x{(MD + DM) + DMD) (I - % J). These roots will
vary with X and certain X values will produce more unbalanced roots than
others. 1In order to evaluate the variation of m(x) with X it will be
necessary to rewrite m(x) in a form which incorporates the functional
dependence of the roots on X. This can be done by noting that the sum of
the roots is the trace of the matrix and the sum of the squares of the

roots is the trace of the square of the matrix.
1 - 2
——— = -+
r-1 E Yxi = Yx T *2” * >‘lx AO

where the A, A

0 and A, are defined for establishing the second form (2)

1’ 2

(
of Syx). Now
= 1 1l 1
Yai = Yy = 7oy EFUI - O = S DIW

W= x°M - x(MD + DM) + DMD

:x = -;;-_1—1- tr(r- % J) [x2M - x (MD + DM) + DMD] (I '% 3) [%2M = x(MD + DM) + DMD]
Let
1
(1 - J) =T
= 1, 4 3 2
Y, = T-i{" tr TMTM - 4x~ tr TMIMD + 2x“ [tr TMTDMD + tr TMDT (MD+ DM) ]
- 4x tr TMDTDMD + tr TDMDTDMD} .
Thus

= 4 3 2 '
Yy = x w4 + x wa + X wz + xwl + wo ’
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where
b, = = erta-Loma-Lom by = - rexia-2 oma-1om
=2 s s 1 -1
by = 2o7 {tr[(1- S HIM(I -2 J)DMD] + tr((I- < IIMD(I- < J) (MD+ DM) ]}
b= - St ama-2 oo g = 2 e -2 Howa -2 9ou)
Then
DX +h,xed + 512 where g(x) = (v,-22) x4 U YRR
m(x) = r-1 21 42 172
[A,x +Alx+>\o+€] +g(x) +¥ymA 0= Al)x Y +A 2 )x+(wo+k )

We note that m(x) is the ratio of two expressions which are 4th degree in X.
As such it can have four distinct critical, or extreme, points. It is
bounded above by r-1 but it is difficult to establish a useful lower

bound. Since Z 'y ( ) Yxi) for any x, we know that m(x) > 1 . It
was shown in Chapter VI that a = ,25, the critical function is insensitive

to changes in m(x) and the lower bound m(x) = 1 may be adequate to bound

r-1l_

m(x) and hence bound —— m(x) m(x)

and hence bound I's, the set of x's for which
blocks are significantly diffevent. But when & is small and there are a
large number of blocks, the m(x) = 1 bound may well be too low to be of
value. The m(x) = 1 result is equivalent to the extreme case of all roots
equal to 0 except one. That any value of X could cause this sort of dis-

tortion of the matrix wx becomes more and more unlikely as r, t.ue size of

the matrix, becomes larger.
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Although it is not in general a lower bound, it van be pointed out

that m(o) = n(»). That is
2
A
lim M) = r-1 —=
X > W4
where
1 1
A2 = r-1 tr(x - r J)n
and

1 1 2
¢4';:ft!'[(1 -;J)M, .

This should not be surprising since as x becomes increasingly large any

x, 3 subtracted from it would

become immaterial.

Hence, m(x) is asymptotic to m(») and the corresponding critical

function is bounded by °2cz-1 and asymptotic to ¢

2:—1

n(@) Cm(e; - The function

m(x) can have a minimum lower than m(=), though it will be greater than 1l.

A great deal of effort can be expended finding the intersection of the s,(x)

function and the critical function.

Example 4.

2
r = 3, t=56,0

' Consider an example.

- J, a = 005’ M= 06\')

4\10s
0o o
1 1 1
X170 XT3 X7 mg 0y D daglxy) =po 3 0
0-3
Then
1 1 1[ { ! 5
\2'5tr(1——J)M-'—t Ty 01 + -12 ~33" .208
(1 -2 1)

{1 0-1)
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2 1 1
A== 2tr(1-3 M = -tr 3 ( ) + (-2) 45 = -+0208
(0 0 +1) © -2 -1)
) . 000
Ao = 3 tE(I -3 J)DMD-- 96(1-—-.3)060 "’23—3' .0382
005
= .0452 v. - 2% = .00174
Vg = - 4" 2"
by = -.0174 by - 20 ), = -.0087
2
v, = .0318 by = D)+ 22 = L0163
¥y = -.00232 by - 2 A, = -.00072
2
by = -00163 ¥o = Ao = .00017
2 4 3 2

§. =y - Y, = -00174x - .00864x” + .0153x" - .00073x + .00017

2(,208x° - .0208x + .2049)°

(.208x% ~ .0208x + .20#3) 2 4 .00174x" - .00864x° + .0163x2 - .00073x + . 00017

m(x) =

'rhe' function m(x) is plotted in Pigure VIiI (Appendix). We iec that

m(0) is very close to r-1, that is, 2 . This is because the x_.'s of the

*3
example sum tc 0 . The curve is asymptotic to 1.92 . However, the minimum
value of the curve occurs between -1 and -2 . This means that X values
between -1 and -2 cause the roots of the wx matrix to be relatively

further apart than any other X values. Such a plot may be disconcerting
but its effect on the problem at hand, i.e., the finding of l‘s; can be

very small.

In Figure VIII, above the m(x) curve, are the —— curves for A

=l
m (%) u(x)
a= 05 andaw=_ 10 . Since 02 is taken equal to 1 in this example, these

are the critical curves for evaluating E‘\;‘x) at the .05 and .10 lewels,
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respectively. When o = .10 the total range of the critical function is
.012 units, and clearly it would be much less for ¢ = .25 . When a = .05,
the range is .24 units. Even if o = .05, this sliyhtly undulating critical
function may not cause appreciable trouble.

Consider the following values for the estimates of the parameters

which comprise s#x). Let

-1
' - Lty =
Gy = MRAL(I - [I, & 2 1)y = (+2)

-1 . -1
_Ill=(I--§J)Gy=(O) ﬂ0=-(1--§-J)l)Gi=%(-l)
- +1 +2
1/2 .
» PR B 3 a,n 1
= ! = e ' = e — ! = - -
K 1{?) iy Eo 2 Elﬁ 3 EoE 3 ’
then
26" ‘\'A " - 9 'A
XML, + x(20 @My + k)] + (@) + <) " (@, + k)
§fx) = 2 1
X Az + xAl + Ao + T
and
2x2 - 2x + %
s}x) = 3

.208x% - .0208x + .2049

in Example 4 (see Figure IX).
. 2
As a first step in finding FS we find FR by equating S#x) to o Cr-l

for a = ,05 .,

2x'2 - 2" + .667
.203x'2 - .0280x' + .2049

S¢x') = 5,992 =
{Recall that r-1 = 2 ,)

X. = 2-76' -.27
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Noting that 540) < 5.99 and .27 < 0 < 2.7€ we state that

i 3o e A Rniat' Bk

ro = U -(-.27, 2.76)

FR is an upper bound on TS in the sense that FS C:I‘R . DNote *+lLat

use of FR means that the true a-level for the test is more than the stated
.05 level.

A second step toward finding TS would be to solve s#x") = (r—l‘cl .

Again, o ~ ,05 .

w2 _ "o
S,;x") - 2x 2x" + 667 - 7.68

.208x"2 - ,0208x" + .2049

x" = 5.05, -.45

a = U =(~ 3
I' Lower Boun;m(x)=l U -(~.45, 3.05) .

The fact that this lower bound is not close to FR means that it will
be necessary to find m(-.27) and m(2.76). Xnowing that the interval found
by using m(x) = 1 is a very poor limiting value, we can expect the true

set, ' ., to be close to FR .

S
Finding the values of m(-.27) and m(2.76) requires the determination of
thewo, wl' wz, w3, and w4 values. Had they not previously been determined

in order to plot Figure VIII, it would be necessary to find them at this

time.

l’t\(“.z-’) - 1-94

m(2.76) = 1.97

_ \ 2% - 2% +
§SX) = T=2=C = 6.00 = -

¥X) = 154 C1.04 .208x2 - .0208x + .2049

wiry

x= (-.27, 2.77




This result would ve sufficient, in most cases, for us to stat:

thut Fs = J =(~.27, 2.78)

Figure IX shows the criti-cal curve for Example 4 for o values of
.25, .10, .05, .025, and .01 . These are presented in order to show the
relatively small amount of difference in the a-level which would result
from using FR as an approximation %o FS . However, this is admittedly
orn.ly one exampl~ and a great deal of work can be dcocne on the matter of
finding a realistic lower 1imit for the critical tfunction. 7Tt nmust be
remenbered that if the eigenroots of the M matrix are all necxr zero except
for cne, tne critical function could rise wvery nearly to 02(1-1)(7l .
Hence, it would ke wvery desirable to find a quick and easy lower limit Jor

the critical function in terms of the matrix M and the diagonal matrix D.

At this point it can be said only that the use of the critical

2 r-1

2 i
. c . d = i s
function o ,-1 Seems to give very goo epproximations to g mix) m{x)

1

unless the M matrix has only one root appreciably different from zero.




CHAPTER VIIT
UNKNOWN VARIANCE

il
When the error variance ¢ must be 2stimated from the experimental

data, an F-statistic can be formed with T#x) and MSE, or ar approximat:

F-statistic can be formed with Séx) and li5E.

Both ﬂ#x) and S#x} are independent of MSE, since he matrix of the
quadratic form of SSE is orthogonal to the E, @, and @ functions of the
yij*s from which ﬂ#x) and a#x) are fcrmed.

2
m#x), being a true X._p ¢ can be used to find a true F-statistic,

1
namely
son _ RSx)/r-1
Fpx) = S0cE r-1,rt-2r-t+1,)
where

=1 a1l _l 21 -1
V=Sl + POOMIET I - 2 W AT - Z3)] (< + B(x)]

Everything that was said about I#x) can be reiterated for FT(x)
Unless conditionas for the special case hold, the calculation of each point
of FT(x) will require inversion of an r > r matrix. The power of FT(x)
" will be greater against some spec.f’c altemate hypotheses than others, as
determined by the eigenvectors and eigenroots of the matrix o “he quadratic
form.

At the cost of knowing the exact distribution of the statictie, these
faults can be sorrected by formulating, with :¥x), an a2y roximate central
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F-statistic under the null hypothesis, namely

m(x)
e 00 = s{x) 1~/ mx _s/eel
3 MSE - MSE m(x) ,q

where
q=rt~2r -t +1 .

As in the cconsideration of SJx), the two values of x (if any) at
which Fs(x) equals any critical value of an F-statistic can readily be
found. However, the critical fuction for evaluating FS(x) is not a
horizontal line although it may be nearly so in most cases. To consider
the variation of the critical function with x, it is necessary to consider

the variation of the critical points of a P-statistic with v, the nusera-

1

tor degrees cf freedom; and the variation of the numerator degrees of

freedom vy = m(x) with x .
Define f by s F = 4 . Note that ¢ = £ . We have
vl,q fv L n n,®
considered the variatiorn of £ with v, in Chapter VI. It was found

\)1 P 1

that fv - Was a monotonic decreasing runction function of Y for small a,
1l

and a monotonic increasing function of V. for u larger than .25 . When

1
a = .25 the largest value of f is found at v. = 2 |
N et 1
. 1
In Figures X, XI and XII, values of fVl < are plotted against — .
14
1

It will be noted that the slopes of these curves are "juite constant," the
variation being in the same direction as before when v = ¢ i not small.

When Vv

> is 1 or 2, the critical function actually increases with Yy The

constant slopes of these curv.: indicated that lincar iaterpolation should
pe done wath %ﬁ rather than with B
1
tiaving established that the critical function f.r = {x) will be

generally monotonic with m(x), the only exception beirn: - - !5 with a
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large number of deyrees of freedom for error, attention is again forused
on the variation of m(x) with x . In the special case of egual covariate
block means, m(x) i1s monotonic with |x - x.i[ , so that limits can be
placed on the critical function by m{x) and r-1 . However, the same prob-
lem ¢f finding a lower limit for m(x) in the general case that was dis-
cussed in Chapter VII cccurxs here. When o is small, the critical function
£ will reflect the shape of the m(x) curve. The closeness of FS to

m(x) ,q

FR can be established only by solving, iteratively, for the inters=ctions

of FS(x) and £ . Consider an example.

m(x) ,g

Example 4. (Continued from Chapter VII).

r=3,t==06, 02 unkaown, MSE = .60, o = .05

2x2 - 2x + .667

54x) =
4 .208x2 - .0208x + .2049

1 .
F_(x) = === &
s = ST S Y i), re-2p-ts1 90der Ho
£ - 4.74

£l rte2r-t+41 = %2,7

To find FR solve Q}x) = 1.2(4.74) = 5.69 for x; this yields

x = -.24, 2.57 . Hence, T = U -(-.24, 2.57).

Next find m(~.24) and m{2.57) .

o]
2[.208(-.24)% - .0208(-.24) + .2049]"
B

[-208(-.24)2 - .0208(-.24) + .204%]" + ¢

mi-,24) =
~.24

5. 2q " .00174(-.24) ¢ - .00864(-.24) + .0163(-.28)" - .0ueTIx + .00017




. 2
m(-.24) = 2(.2219) — = 1.94

(.2219)°% + .0014

£1 04,7 = 476
L 5% = 1.2(4.76) solving, x = -.24
r 2

R
m{2.57) = “(1';24) = 252522) = 1.97
{1.524)° + .0353 ‘
£ g7,7 = 475
S}x) = 1,2(4.75, = 5.70 solving, x = 2.55
Then I = U =(-.24, 2,56)

. —y




CHAPTER IX
FVALUATION OF THE TESTS

It is desired to find a test for block differences for an eyrjoerimental
rodel which has block effects with a fixed portion add=d to a regression
portion.

. . < 2 2,

In looking for a test cne turns naturaily to a x test when ¢ is

2, e s
known or an F-test when v~ is estimated. To study *he variation of the
test statistic with the covariate, the matrix of the quadratic form is

expanded in eigenvectors.

“ - 2
. ] 1
-1 {lx + P(x)] Vi 2

r-1

r

e - L X
2 Tx) = 2 ‘S yo. t
o g i=l X1

ot |~

It is noted that the numerators of the fractions would acéd nicely to
[é + é(x)]'[é + é(x)) » but with uneaual v _.'s in the denominators of the '
fractions such an operation is not peramissible. Clearly an upper limit
on Tyx)} could be found using the minimum Y i and a lower limit would
result using the maximum of the Yxi's . This assumes, of course, that the
vxi's are known. The temptation to awverage the vxi's would occur tc an
applied person who had not been too thoroughly influenced by the mathe-
matical quest for cxactness.

The appliﬁd mathematician mdqﬁt very well average the Yxi.' to ght
an approximation ¢f ™{x). Then if he wore asked "Dees your approximation

-

of %{x' have the same critical point (er function) r*"(‘r_l?" he might say
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1"~

Only Lf th- Yxi‘s are exact.lv alike, otherwise 1| hedge a little. That

ig, where the inls are very different it takes more to surprise me at the

p:

same «--level. However, in all honesty, if T have no reason to believe the

. . . 2
roots are very different, I just go ahrad and usc ¢ C 1 !
’ r-]

The staticstic

& - [ r vrlo4p T Sul SR
Sfx) = e+ ROOTT + ROOT Y S

where

does the averaging and hedging with the mathematical justification of

o)
fitting a multiple of a central x with a certain number of degrees of
freedom. With this justification for what the applied mathematician might

do instinctively, the test is found tc k= insensitive to differences in

roots when  is large. When o is small, checks (finding the @0, “1' wz,

vy g and hence m(x) values defined in Chapter VI) are tedious, but not
nearly so tedious as solving Irx) = ”zcr-l for x .

The expansion of Tx) has another result. Tt shows that the Twx)
statistic is weighting the various contrasts of the bLlcck unevenly as we
iaw more or l#ss information about them. Crantinag the general wisdom of
such a move, {f wo are eogally inturcstoglix\\\[I‘ﬂf_!hv‘h(ockn, ?yixf is
not veally telling ur what we want to hnew.  That s, %) givws an rxact
answer ta the approximate preblos at hand, gxl, oon the other hand,. gives

AN arproxingte answer to the exasctprab lem oot ftand, wbhoom i mare in line

witii the deuires «f the statisticran,




o Y © 7T T A T T Y, T s T FofSTT X WO TS WA S S Y TR T T L TR

T e

64

The Tx) test is uniformly most powerful against a set of alternatives

which may not be of particular interest. O0f interest in regsrd to this
point is work by Reisch and Webster (6], Scheffe [B8] and Hsu [4]. ine re-
direction of power offered by ng) should mcre than compensate for the
errors incurred by the approximate nature of the test.

The ng) test which 1s the SAX) statistic evalueted against the
critical function of BYx) i a further approximation. E}x) is a very good
approximation of ﬁ#x) for hign w~lavels and seems to also give good results
when o 15 low. R#x) has the further intuitively avpealing characteristic
of always yielding a set of X values for which the test is significant
which is of the interval or interval~-complement form.

The test R#x) and the resulting set of X values, TR’ are simple
and practical tools which should find use in industry and in the sncial
sciences. They are well suited to the large u situations in which ore is
particularly concerned (worried) about not recoynizing bhlock differences
when they occur. The usefulness of these tools in scientific research
would be increased immeasurably with a lower bowmd for m(x) wher the co-
variate block means are not ¢:ual and with some study into tne closeness
of the approximeting distribution.

Althouth this work has been developed for a two-way classification
rodel with a covariate, it is cqvally valid when the treatment effects are
0. Then we are talkirg about comparing simple rﬂgrcs&ions‘based on t

replications fror @ :ditferept sources and the M matvix is diagonal in that

Case.

Work s surrently being dene by the author to extend these results to

compare muitiple reqgressions from difforent sources. In these cases, the

A-type statistic addresers itsolf more directly to ti rro-lom at hand than

P T

"
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does a T-type statistic, and it will greatly simplify the problem of
finding sets of points for which the test is significant., However, there
may be a number of other cases in which one would rather not accept the
unequally weighted contrasts of the conventional sum of squares for re-
gression test. Armed with some facts about the closeness of the approxi-
mations it is possible than one might wage war on many fronts against the

wide-spread use of é'(x'x)é to test the effects of 8 when y = xB + € .




APPENDIX I

THE MATRIX (I - —11_;3) (x - Lam - %J)

%A'A)-I(I - -lr-.:r) where A = [a..].. and

. 1
The matrix (I - = J)(I i txr

X,.. - % .
= i . h e _ 2 . .
aij ——%3;7;—1- where (qx)j ‘/%(xij x.j) occurs in this work as a
1

- -1 -
special case of the matrix (I - ;-J)M(I - %-J) where M = R l(I - %-A'A) R 1

and R is a diagonal matrix with jth

element (qx)j . If the covariate values
are controllable, .he elements of R can be expected to be made very <lose
to the same values. Tn Cox's example [l] the covariate values in each
block are the digits 1, 2, 3, *++ , t so that R would be the constant
VSJEi%%iE:lL times an identity matrix.

The R matrix is clearly nonsingular so the nonsingularity of M-l
depends on the matrix (I - %-A‘A). Singularity of this matrix could

result only from A'A being of rank one. This follows from the positive

semi-definite nature of A'A and that its trace equals r .

X X
.].'. ' ' - _1_ ' - - ot
Let - A'A = E \y,Vi o then (I = 2 A'A) izl (1- ).t , wrere

2 Ai =1 and 0 < Ai < 1 for all i. Hence the only way to produce a O-root
b
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of (I - % A'A) is for one i to be equal to 1 and the others to be 0. In
t

% aij"“i'jl B

for all i and i' . 1In other words, each Ej vector, vith elements a,

ij

identical to all other §j' vectors, or to their negative value. Symbolically,

that case % A'A = lgiyi where vfk= 1/r for all k. That is,

, is

A= (a, -a, =2, a, **+ , a). If this were the case, one linear function
of gj's and | would be hopelessly confounded with one linear function of
treatments, *hus accounting for the singularity.

If the covariate is uncontrollable, such an occurrence is most im-
probable, and if the covariate is controllable the situation will be
avoided.

One desirable case of singularity should be noted here. If A'A=J
thgn ¥ will be confounded with treatments leaving the Bj's estimable. Such
mothematical neatness is only possible if the covariate is controllable,
and only desirable if there is no interegt in examining treatments or mean
regression.

Under the above very rigid restrictions the A matrix could be written

as [diag(ai)]Jtxr or A= (a, 2. a, a, *** , a) where the elements of the

vector a are a; - Then equation (3) of Chapter II becomes
“ 3Yi ) Yi3
i .
L ay La by,
| & 7172 ! 3 1]
N =0l -L1m @+
| Dayye  Daglvg
Li i j J
where

R= I
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Lovs(-Layg =i
Slat e (1 - =

variance
2 2
A - o 1 o 1
kK + 28 = (I rJ)+u,2(1'rJ)
Hence,

15 >
+

I 2,1 1 1
28 v N[ + 28, ¢ (€+w2)(1 -9

when A'A = J and R = I .,

Assuming (I ~ %-A'A) to be rnmsinguiar by design or happenstance,
one_need be wary only of near singularit: when the primary eigenvector of
the A'A matrix, that is, the wvector corresponding to the largest eigenroot
is not proportiocnal to 1 or nearly so. To clarify this point consider

first a desirable A'A matrix of the following form.

1 0 p 0o o
p 1L p p o
L 1
el LI [
P pp 1 o
p P P 9 .‘:,'
Then
'J‘A'A - s (1-p)I + lpJ - ______'l"'(l'-l)f_ o 11'] + ril r=(1-p) v. v
r r Pty IR A
i=1 _
where
vil=0 foralli
and

Yy =1 it

gigi, =0 if i ¢i'
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Then
r r r == r =i-i
and
-1
- P o ———— 1 ' g _r '
@ -2AN =Ty B L mony uy

The full matrix (I - %J) (I - %A'A)'l(x - %J) then becomes

r-1
e R A
joq T -p) =i

The matrix has r-1 identical eigenroots of magnitude ;:?f:sy
These roots are between 1 and =1 resulting in a trace between r-1 and

r-2
n?
-2 *

That is, even a p wvaluc very near 1 does not destroy the balance of
the covariance matrix although it makes the I - %-A'A matrix very nearly
gingular.

However, this property is lost if the A'A matrix is of a form such as

(1 -p - -p]
- 1 p o
» o 1

1l

L3

-p P P

Then

L

1l . 1
L] - - -
Aa-r\la)r*ro_

R
e e

(-1111)
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And
AN
-1
1,,,-1__ x 1 1 5 r .
(1 r A'A) (r=1)(1-p) |[r\ 1 * =1 r-(1-p) Y
1 (<1 111)
2 ~1
- r I+ rp i 1
r-(1l-p) (r-1) (1-p) [r=(1-p)] (x| 1
Vi1
The (I - l-J)(I - l-A‘A)-l(I - é-J) matrix becomes
r r r
2 -1
—xr .l r I U QY 1 _1
) 7 (5_;)(_1__1)[5_(_1__1)] XTI (I=¢ D
LA e 1P Vi1

The roots of this matrix are not balanced and the trace of this matrix is

(r-1)r r2 - (r-2)2 7

SN S R )

In this form, it is apparent that the trace of the covariance matrix can

be made as large as anyone chooses by making p very close to 1l . If P is
very close to 1, the primary eigenvector of the A'A matrix would be
-2;'(-1 111 .,
/r

These two illustrations of near singularity are presented to aid the
reader in understanding the types of A'A matrices which will yield un-
balanced eigenroots and large trace values for the covariance matrices of

block regression effects. It is these conditions which will cause the

tests for block effects to give poor results. By way of summary, these
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conditions are near singularity, caused by a nearly degenerate A'A matrix,
-unless the primary vector of the A'A matrix is proportional to a vector

of +1's .

1
r

1

Furthermore, the r-1 eigenrocts of the matrix (I = %J) (1 - =Aa'A)"

x(I = %-J) are all greater than 1 . To prove this point let

1

= _J;,o =4 _ 1_
Q= (I rAA) =

—_— ¢
i=1 l-Al -i=i

[ Rl

where 0 < )\i < 1 and hence 0 <« l-Ai < 1 . That is, Q has r roots greater

chan 1 . Then

-— )
I= 2 o o
i
and
- = ——— '
Q I Z ]-)\' ] !J.Yl ¢
i
Note that
1. >0 for alli.
1-x,
i
Hence, Q~I is a positive definite matrix. It then follows that
1 3
(I - %‘J)(Q-I)(I - ;-J) is a positive semi-definite matrix with r-1 posi-
, 1
tive roots and one zero root corresponding to the eigeavector 7_—-} .
r

Therefore,
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r-1

....].:. ...1; ..l. .]L A . ;l
(1 v_J)(Q)(I rJ)+rJ-r}:_ + E (lhni)EiEi
i=1
and
1 1 r-1
- — - = . '
(1 T J)o(I - J) 1.2_1 (1 + ni)gigi and 1+ ny > 1 .

Hence, (I - %J) (I - %; A'A)-l(I - ELz:.‘J) has r-1 non-zero roots all
greater than 1 . And if R=wI, then (I - %J)M(I - % J) has r-1 roots
all greater than L .
w2
With this lower bound on the roots and the upper bound furnished by
the sum of the roots being equal to the trace of the matrix, we can often
be assured of a high degree of balance among the roots without actually

finding them.




4 APPENDIX II

CHARYS AND GRAPHS
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FIGURE II.

FIGURE III.
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FIGURE X
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FIGURE XI
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